In the last blog post we looked at working out the number (distance between the notes) for our intervals. If you haven’t done so already, make sure to read the previous blog post on intervals first as this post will take the idea a little further! We will be looking at how to work out your major, minor and perfect intervals!

## What is an interval?

As we saw last week, an interval is the distance between two notes. These can be melodic (one note played one after the other) or harmonic (both notes played simultaneously).

We also saw how important it is to know the degrees of the scale as this makes the interval much easier to work out. The first note of the scale is the 1^{st} degree, the second note is the 2^{nd} degree etc.

The interval can then easily be labelled with a number. Take a look at some examples below…

If you are still a little unsure how to work out the number of your interval then practice using the resources available on this website!

### As well as this number, each interval is also labelled with a description…

Each interval is also labelled with a description.

These descriptions are:

### major, minor and perfect intervals!

There are a few more, but for today we will stick to these three.

Let’s look at the below interval…

What is this intervals number (distance between the notes)?

Let’s write out the scale. Remember, we always work the interval out by going from bottom to top, so we need to write out the scale of G major…

As you can see, B is the 3^{rd} note of G major and this makes the interval a 3^{rd}! In order to work out whether this is a major or minor interval we need to see if the top note is in the scale of the bottom note… so is B natural in G major?

The answer is YES! This makes the interval a MAJOR 3^{rd}!

A minor 3^{rd} is one semitone smaller than a major 3^{rd}… let’s look at the piano

One semitone smaller than B is a Bb meaning that the below interval (G-Bb) is a minor 3^{rd}!

## Let’s try some more examples of major, minor and perfect intervals

Look at the below interval…

What is the number of this interval?

That’s correct, it is a second! Now ask yourself, is D natural in C major?

The answer is YES. Therefore this is a Major 2^{nd}.

##### How can we turn this into a Minor 2^{nd}? Bring it down a semitone!

A semitone lower than D is Db!

*Remember this cannot be C sharp otherwise you actually change the intervals number!*

What about this interval?

What is the intervals number?

That’s correct, C-Ab is a 7^{th}! Now, is Ab in C major? No it is not… we have an A natural in C major.

As you can see Ab is a semitone lower than A making this a MINOR 7^{th}!

Last example…

Now this interval we need to be really careful…

Remember that we must work out an interval from the LOWEST note… which is the lowest note?

That’s correct, it’s the D! So let’s write out the D major scale…

What is the interval between D and Bb? That’s correct it’s a 6^{th}… but is Bb in D major? No it is not… we have a B natural in D major! Bb is a semitone smaller than B natural, making this a MINOR 6^{th}!

### Now there are three intervals that cannot be considered major or minor…

These are the intervals of a 4^{th}, 5^{th} and 8ve! For these three intervals, we use the word perfect!

Remember perfect is used because 4^{th}, 5^{th} and 8ve because the 4^{th}, 5^{th} and 8ve are the same in both the major and the minor scale so therefore cannot be labelled as major or minor!

Let’s compare G major and G minor scales…

As you can clearly see, the 4^{th}, 5^{th} and 8ve are all the same!

##### Let’s have a look at the below interval…

Can you label this interval?

That’s correct, it is a PERFECT 5^{th}!

If you are interested in practicing your major, minor and perfect intervals further, then make sure to check out the resources on this website to deepen your knowledge!